

ProtaStructure Design Guide

ProtaStructure[™] and ETABS[™] Result Comparison

Version 1.0

March 2025

Please contact us for your training and technical support queries

asiasupport@protasoftware.com

globalsupport@protasoftware.com

Publisher

Limitation of Responsibilities	Prota shall not be held responsible for any losses caused by documentation, software, or usage errors.
	In addition to Prota License Agreement Terms, it is the responsibility of the user.
	• to check results generated by documentation and software,
	 make sure that the users of the software and their supervisors have adequate technical capabilities,
	 Make sure the software is correctly used by reference manual and documentation.
Intellectual Property	ProtaStructure is a registered trademark of Prota Software Inc , and all intellectual property belongs to Prota Software Inc . Documentation, training, and reference manuals. Any program component cannot be copied, distributed, or used in violation of the license agreement.
Trademarks	ProtaStructure[®], ProtaDetails[®], ProtaSteel[®] ve ProtaBIM[®] are registered trademarks of Prota Software Inc. Prota logo is a trademark of Prota Software Inc.

Table of Contents

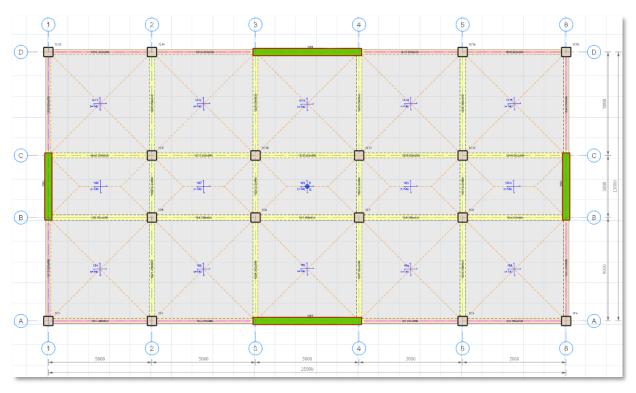
Table of Contents
Model Description
Analytical Model
Load Pattern Definitions in ETABS
Seismic Parameters
Selection of Analysis Procedure
Horizontal Acceleration Spectra in ProtaStructure and ETABS9
Vertical EQ Spectra in ProtaStructure and ETABS10
Comparison of ETABS and ProtaStructure Results
Storey Masses and Weights12
Modes and Modal Participating Mass Ratios13
Base Shear and Floor Shear Forces14
Manual Verification of Base Shear15
Comparison of Joint Displacements and Rotations16
Comparison of Shearwall Internal Forces17
Load Cases and Combinations to Compare17
Comparison of Beam Internal Forces21
Comparison of Vertical Earthquake Analysis Results23
Conclusion and Discussion of Results
Thank You

Model Description

In this case study, ETABS and ProtaStructure program results were compared using the ELF (Equivalent Lateral Force) method per **ASCE 7-16 code**.

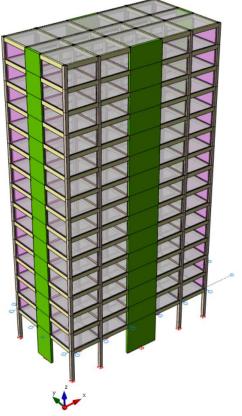
Every structure and portion thereof, including nonstructural components that are permanently attached to structures and their supports and attachments, shall be designed and constructed to resist the effects of earthquake motions per Chapters 11, 12, 13, 15, 17 and 18 of ASCE 7-16.

The case study building is composed of **15** stories. All the story heights are **3.5** m except first story height which is **4** m. As a result, the total structural height is $h_n=46$ m.

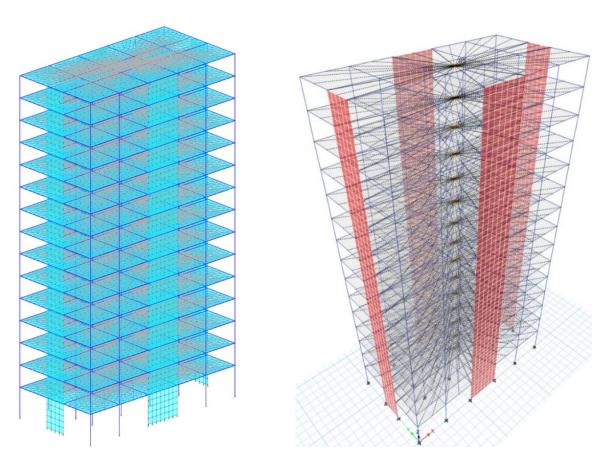

All stories are designed as reinforced concrete slabs with beams. There are shearwalls along both directions.

Concrete and reinforcement grades are selected as **C300** and **SD60** respectively. Slab and shearwall thicknesses are 140 mm. and 350 mm, respectively. Furthermore, all Beams are 250x600 mm. and all Columns are 450X450 mm.

Note:


The creation of the building model and the completion of the building analysis in ProtaStructure are out of scope of this study. For the sake of a more independent comparison, The ETABS Model was created from scratch in ETABS instead of exporting from ProtaStructure. Specific attention also has been paid to include the combined effect of gravity, lateral earthquake and vertical earthquake simultaneously (with cracked section properties) to exhibit a real-life scenario as much as possible, instead of simple comparison. Reasons for observed differences were explained wherever required.

Plan and 3-D view of the building are shown below.



Typical Story Plan

ProtaStructure - 3D Physical Model

ProtaStructure - Analytical Model

ETABS - Analytical Model

Analytical Model

The SI unit system is used throughout the document. In both software, cracked section properties were used according to ACI 318-19 Code Section 6.6.3.1.1.

Remark:

ProtaStructure has a special feature that allows the use of <u>cracked section properties</u> for G and Q load cases which are part of <u>seismic combinations</u> and <u>uncracked section properties</u> for G and Q load cases that are part of <u>non-seismic combinations</u>. However, this requires two separate analyses, which ETABS cannot do automatically. ProtaStructure can consider both cracked and uncracked section properties in a single analysis run. This is often required by seismic codes to consider cracked and uncracked section scenarios simultaneously for seismic and non-seismic combinations.

Note:

The existence of this feature does not affect the comparison since the seismic combinations are compared and the same cracked section properties are used in both software. We would need to make separate analyses in ETABS with uncracked section properties to compare the vertical combination results with ProtaStructure. Alternatively, we would need to set all cracked section modifiers to 1.0 in ProtaStructure.

Remark:

Rigid zones were not considered in modeling.

Load Pattern Definitions in ETABS

Load Pattern definitions in ETABS for **EXP** and **EYN** load cases are shown below.

O Approximate C (ft) x = Calculated Coefficients O Program Calculated C (ft) x = 0.02: 0.75 ∨ SOS * (2.0)* Fa* Sa 1 O User Defined T = sec SDI = (2/3)* Fa* Sa 1 0.4	Direction and Eccentricity		Seismic Coefficients		
NDF - Eccentricity Y Dr - Eccentricity Unr - Eccentricity Ecc: Ratio (Al Daph.) 0.05 Overwrite Eccentricities Overwrite Program Calculated 0 ft) x = Program Calculated 0 ft) x = User Defined T = Top Story for Seismic Loads Story 15 ∨ Bettom Story for Seismic Loads Base	C X Dir	Y Dir	0.2 Sec Spectral Accel, Ss	1.25	
Ecc. Rato (Al Daph) 0.05 Overwrite Eccentricities Overwrite Period Ste Cast Program Calculated C R) x = O Leng-Period Instation relied Ste Cast Ste Cast C O Approximate C R) x = O User Defined T = Tap Story for Seismic Loads Story 15 Battom Story for Seismic Loads Base	X Dir + Eccentricity	Y Dir + Eccentricity	1 Sec Spectral Accel, S1	0.4	
Overwrite Overwrite Site Class C C Overwrite Overwrite Site Coefficient, Fa 12 Site Coefficient, Fa 12 Ime Period O (th) x = O Site Coefficient, Fa 15 Calculated Coefficient, Fa 15 O Program Calculated O (th) x = 0.02; 0.75 Site Site Coefficient, Fa 1 O User Defined T = sec Site Site Coefficient, Fa 1 0.4 Story Range Factors Factors Factors Response Modification, R 7	X Dir - Eccentricity	Y Dir - Eccentricity	Long-Period Transition Period	8	
Inter Period Site Coefficient, Fa 12 Approximate C (ft), x = Site Coefficient, Fv 1.5 Program Calculated C (ft), x = 0.02; 0.75 Site Coefficient, Fv 1.5 Program Calculated C (ft), x = 0.02; 0.75 Site Coefficient, Fv 1.5 O User Defined T = sec SDS * (2/3) * Fa * Sa 1 0.4 Nory Range Tap Story for Seismic Loads Story 15 Pagorase Modification, R 7	Ecc. Ratio (All Diaph.)	0.05	Ste Class	c ~	
O Approximate C R) x = Calculated C R) x = Calculated C R) x = Calculated C R) x = C R) x = <thc)="" r="" r)="" x="</th"> <thc)<="" r="" r)="" td="" x="</thcode"><td>Overwrite Eccentricities</td><td>Overwrite</td><td>Ste Coefficient, Fa</td><td colspan="2">1.2</td></thc></thc>	Overwrite Eccentricities	Overwrite	Ste Coefficient, Fa	1.2	
O Program Calculated C (R), x = 0.02: 0.75 ✓ Calculated Coefficients SDS + (2/3) * Fa * Ss 1 0.4 User Defined T = sec SDS + (2/3) * Fa * Ss 1 0.4 Story Range T = sec SDI + (2/3) * Fa * Ss 1 0.4 Top Story for Seismic Loads Story 15 ∨ Factors Response Modification, R 7	Time Period		Site Coefficient, Fv	1.5	
O User Defined T = sec SDS + (2/3) * Fa * Sa 1 Nov Range SD1 + (2/3) * Fv * S1 0.4 Top Story for Seismic Loads Story 15 ∨ Factors Bottom Story for Seismic Loads Base ∨ Response Modification, R 7	○ Approximate ○ (ft), x	-	Calculated Coefficients		
O User Defined T = sec SD1 = (2/3) * Fv * S1 D.4 Kory Range Top Story for Seismic Loads Story15 ∨ Factors Factors Bettom Story for Seismic Loads Base ∨ Response Modification, R 7	O Program Calculated Ct (ft), x	■ 0.02; 0.75 V	SDS = (2/3) * Fa * Ss	1	
Top Story for Seismic Loads Story 15 V Bottom Story for Seismic Loads Base V Response Modification, R 7	O User Defined T ≈	sec		0.4	
Top Story for Seismic Loads Story 15 V Bottom Story for Seismic Loads Base V Response Modification, R 7	itory Range		-		
Bottom Story for Seismic Loads Base	Top Story for Seismic Loads	Story15 v			
System Overstrength, Omega 25	Bottom Story for Seismic Loads Base ~		Response Modification, R	-	
			System Overstrength, Omega	2.5	
	OK	Cancel	Occupancy Importance, I	1	

ASCE 7-16 Seismic Loading

Direction and Eccentricity			Seismic Coefficients		
X Dir	Y Dir		0.2 Sec Spectral Accel, Ss	1.25	
X Dir + Eccentricity Y Dir + Eccentricity			1 Sec Spectral Accel, S1	0.4	
X Dir - Eccentricity	Y Dir - Eccentricity		Long-Period Transition Period	8	
Ecc. Ratio (Al Diaph.) -0.05 Overwrite Eccentricities Overwrite		Site Class	c v		
		Site Coefficient, Fa	1.2		
Time Period			Site Coefficient, Fv	1.5	
○ Approximate □	ft), × =		Calculated Coefficients		
O Program Calculated Ot	ft), x = 0.02; 0.75	~	SDS = (2/3) * Fa * Ss	1	
O User Defined T		sec	SD1 = (2/3) * Fv * S1	0.4	
Story Range					
Top Story for Seismic Loads	Story 15	~	Factors		
Bottom Story for Seismic Loads Base		~	Response Modification, R	7	
			System Overstrength, Omega	2.5	
			Deflection Amplification, Cd	5.5	
OK	Cancel		Occupancy Importance, I	1	

PROTA Structure

Seismic Parameters

The mapped maximum considered earthquake spectral response accelerations, S_s (for short period, 0.2 sec.) is 1.25 g and S_1 (for long period, 1.0 sec.) is 0.40 g.

The building is located on Site Class C soils [ASCE 7-16 Table 20.3-1].

Short-period site coefficient, $F_a = 1.2$ and long-period site coefficient, $F_v = 1.5$ [ASCE 7-16 Tables 11.4-1 and 11.4-2].

Maximum considered earthquake spectral response accelerations adjusted for site class effects are determined by using the Equation 11.4-1 and Equation 11.4-1 in ASCE 7-16:

$\mathbf{S}_{\mathbf{M}\mathbf{S}} = \mathbf{F}_{\mathbf{a}} \mathbf{S}_{\mathbf{s}}$	= 1.20 x 1.25	= 1.500 g
$S_{M1} = F_v S_1$	= 1.50 x 0.4	= 0.600 g

The 5 % damped design spectral response accelerations S_{DS} at short period and S_{D1} at long period are determined by using the Equation 11.4-3 and Equation 11.4-4 in ASCE 7-16:

$$\begin{split} S_{DS} &= 2/3 \ S_{MS} = 2/3 \ x \ 1.500 &= 1.000 \ g \\ S_{D1} &= 2/3 \ S_{M1} = 2/3 \ x \ 0.600 &= 0.400 \ g \end{split}$$

The Risk Category of the building is determined as II [Table 1.5-1 in ASCE 7-16].

Based on the Risk Category, the Seismic Importance Factor of the structure is $I_e = 1.00$ [ASCE 7-16 Table 1.5-2].

Risk Category from Table 1.5-1	Snow Importance Factor, <i>I_s</i>	Ice Importance Factor— Thickness, I _i	Ice Importance Factor—Wind, <i>I_w</i>	Seismic Importance Factor, <i>I_e</i>
I	0.80	0.80	1.00	1.00
II	1.00	1.00	1.00	1.00
III	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

All the structures shall be assigned to a **Seismic Design Category (SDC)** based on their risk category and the design spectral response acceleration parameters. Seismic Design Category (SDC) determines the permissible structural systems, limitations on height and irregularity, those components of the structure that must be designed for seismic loads, and the types of analysis required.

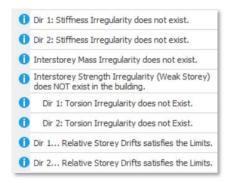
The determination of **SDC** is carried out by using Table 11.6-1 and Table 11.6-2 in ASCE 7-16.

 $S_{DS} = 1.000$ g and Risk Category is II \Rightarrow SDC is D. $S_{D1} = 0.400$ g and Risk Category is II \Rightarrow SDC is D. Therefore, **Seismic Design Category** is determined as **D**.

According to ASCE 7-16 Table 12.2-1.

D. DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES	12.2.5.1							
1. Steel eccentrically braced frames	14.1	8	21/2	4	NL	NL	NL	NL
2. Steel special concentrically braced frames	14.1	7	21/2	51/2	NL	NL	NL	NL
3. Special reinforced concrete shear walls ^{g,h}	14.2	7	21/2	51/2	NL	NL	NL	NL
4. Ordinary reinforced concrete shear walls ^g	14.2	6	21/2	5	NL	NL	NP	NP
5. Steel and concrete composite eccentrically braced frames	14.3	8	21/2	4	NL	NL	NL	NL
6. Steel and concrete composite special concentrically braced frames	14.3	6	21/2	5	NL	NL	NL	NL

The "Seismic Force Resisting System" is selected as "D3" and the corresponding "Response Modification Coefficient" is R=7.


Overstrength Factor, Ω_0 is 2.50 and Deflection Amplification Factor, C_d is 5.50. It can be seen from the table that the structural height is not limited for SDC=D.

Selection of Analysis Procedure

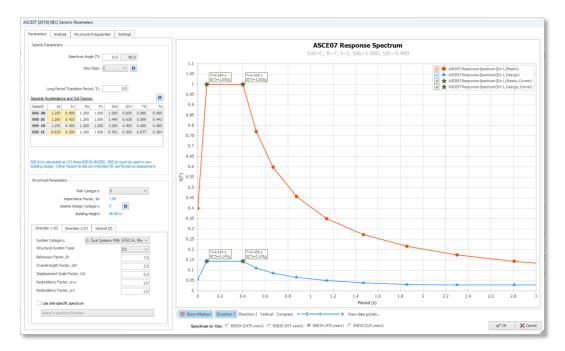
After carrying out the building analysis process in ProtaStructure, it's necessary to check whether the ELF (Equivalent Lateral Force) method is suitable for the structure under consideration.

For this purpose, horizontal and vertical irregularities can be checked using "**Post-Analysis Checks Report**" under the Reports tab in ProtaStructure.

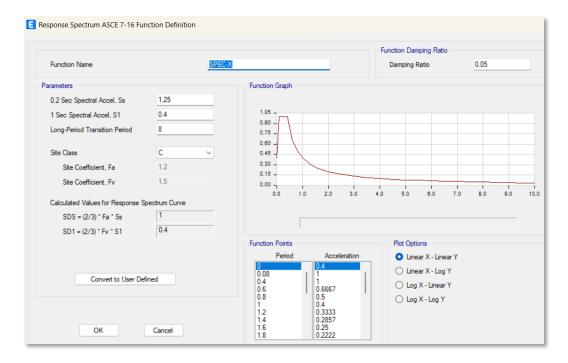
In the Notifications tab, it's indicated that there is no horizontal and vertical irregularity for the structure.

Considering that total structural height is h_n =46 m. and SDC is D, ELF method can be used according to ASCE 7-16 Table 12.6-1 as shown below.

Seismic Design Category	Structural Characteristics	Equivalent Lateral Force Procedure, Section 12.8 ^a	Modal Response Spectrum Analysis, Section 12.9.1, or Linear Response History Analysis, Section 12.9.2 ^a	Nonlinear Response History Procedures, Chapter 16 ^a
B, C	All structures	Р	Р	Р
D, E, F	Risk Category I or II buildings not exceeding two stories above the base	Р	Р	Р
	Structures of light-frame construction	Р	Р	Р
	Structures with no structural irregularities and not exceeding 160 ft (48.8 m) in structural height	Р	Р	Р
	Structures exceeding 160 ft (48.8 m) in structural height with no structural irregularities and with $T < 3.5T_s$	Р	Р	Р
	Structures not exceeding 160 ft (48.8 m) in structural height and having only horizontal irregularities of Type 2, 3, 4, or 5 in Table 12.3-1 or vertical irregularities of Type 4, 5a, or 5 b in Table 12.3-2	Р	Р	Р
	All other structures	NP	Р	Р


Table 12.6-1 Permitted Analytical Procedures

^{*a*}P: Permitted; NP: Not Permitted; $T_s = S_{D1}/S_{DS}$.



ProtaStructure calculates Design Response Spectrum for horizontal directions per ASCE 7-16 code as shown below.

It's the same for Direction 1 and Direction 2 for this model but can be selected differently for different earthquake directions.

The horizontal elastic spectrum in **ETABS** is as follows.


Horizontal elastic spectra in ProtaStructure and ETABS plotted on the same graph.

Vertical EQ Spectra in ProtaStructure and ETABS

For the structures in Seismic Design Categories C, D, E and F, vertical seismic load effect is determined with the following equation [ASCE 7.16 Equation 12.8-2]:

$$E_v = 0.3 S_{av} D$$

ProtaStructure calculates the vertical response spectrum by using the formulas given in ASCE 7.16 Section 11.9 and then multiplies S_{av} values by 0.3. It's shown below.

In ProtaStructure Vertical and Horizontal spectra are also tabulated and graphically presented in "**Pre-Analysis Checks Report**".

Vertical earthquake analysis is then performed with "Modal Spectrum Analysis Method".

Seismic Loading Equivalent Static Load	✓ Create Seismic Combinations not Including Live Loads	IBC Ex+, Ex-, Ey+, Ey-		
Add Vertical Seismic Case	✓ Apply 30% of Other Direction Loading	Create All Possible Combinations for Symmetic Results		
Modal Spectrum Analysis Method	~			
Approximate Static Approach		Use Cracked Sections		
Modal Spectrum Analysis Method				

For the structures in Seismic Design Categories A, B, vertical seismic load effect shall be determined by the "Approximate Static Approach".

Remark:

ETABS cannot automatically calculate vertical design spectrum per ASCE 7.16 code. Therefore, the vertical spectrum calculated by ProtaStructure was directly transferred to ETABS via "From File" option.

PROTA Structure

Comparison of ETABS and ProtaStructure Results

Storey Masses and Weights

A comparison of storey mass and seismic weights are tabulated below:

Storey	Н	Mass	(tons)	G (kN)	Q(kN)	W	(kN)
		ETABS	PS	ETABS	PS	ETABS	PS	ETABS	PS
15	3.0	264.78	281.20		2649.53		650.00	2941.25	2812.03
14	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
13	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
12	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
11	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
10	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
9	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
8	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
7	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
6	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
5	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
4	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
3	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
2	3.0	352.79	333.04		3167.93		650.00	3459.65	3330.43
1	4.0	364.50	356.02		3397.68		650.00	3689.40	3560.18
Total				49168.60	47230.32	9750.00	9750.00	51606.10	49667.82

Note:

Mass and seismic weight values align well between the two software. The **4.1%** difference is mainly due to the different approaches taken in structural self-weight calculation load decomposition between ETABS and ProtaStructure. No such difference is observed in imposed loads.

- ProtaStructure accurately calculates and decomposes slab self-weights faces of the beams. Therefore, the slab net span is used in calculations to prevent double counting with beam self-weights and the portion of any additional dead loads on the beam surface.

- Beam weights are not considered in the beam-column intersections in ProtaStructure, to avoid double counting which results in lower overall weight.

- ETABS distributes half of the first storey mass to the foundation level which is not given on the table above.

- ETABS does not report mass values of G and Q separately for each storey. That's why they weren't included in this table.

Modes and Modal Participating Mass Ratios

Mode	Perio	ds (s)		Mass ParticipationMass ParticipationMass Participationalong X-Axis (%)along Y-Axis (%)About Z-Axis (%)		•		
				. ,				, <i>,</i>
	ETABS	PS	ETABS	PS	ETABS	PS	ETABS	PS
1	2.207	2.235	0.000	0.000	73.500	74.130	0.000	0.000
2	1.647	1.670	69.780	70.091	0.000	0.000	0.000	0.000
3	1.515	1.539	0.000	0.000	0.000	0.000	70.690	71.201
4	0.614	0.634	0.000	0.000	13.320	12.838	0.000	0.000
5	0.401	0.412	16.200	15.845	0.000	0.000	0.000	0.000
6	0.384	0.397	0.000	0.000	0.000	0.000	15.190	14.276
7	0.285	0.300	0.000	0.000	5.540	5.396	0.000	0.000
8	0.172	0.175	0.000	6.455	0.000	0.000	0.000	0.000
9	0.171	0.174	6.150	0.000	0.000	3.016	0.000	0.000
10	0.166	0.115	0.000	0.000	0.000	1.824	6.150	0.000
11	0.166	0.099	0.000	3.357	2.960	0.000	0.000	0.000
12	0.164	0.082	0.290	0.000	0.000	1.137	0.000	0.000

Results obtained in both programs are as follows

There is a **1.25%** difference for the 1^{st} mode period (Y-direction mode) and a **1.38%** difference for the 2^{nd} mode period (X-direction mode) between ETABS and ProtaStructure.

As for the 3rd mode period (primarily rotation mode) there is a **1.56%** difference.

Note:

Modal results align well between two software within reasonable tolerances. It must be acknowledged that the slight discrepancy here results from the difference in mass calculation and calculation of mass moments of inertia (in addition to stiffness differences in FE formulation and assumptions)

Base Shear and Floor Shear Forces

Base Shear and lateral loads calculated at the floor levels obtained in both programs are tabulated as follows.

Storey	Fx &	Fy (kN)	
	ETABS	PS	Difference
15	268.73	292.45	8.11%
14	326.83	315.93	3.45%
13	296.36	286.42	3.47%
12	266.70	257.69	3.50%
11	237.87	229.78	3.52%
10	209.93	202.73	3.55%
9	182.92	176.60	3.58%
8	156.92	151.45	3.61%
7	132.00	127.35	3.65%
6	108.26	104.39	3.71%
5	85.80	82.69	3.76%
4	64.79	62.40	3.83%
3	45.43	43.72	3.91%
2	28.04	26.96	4.01%
1	13.59	13.49	0.74%
Total	2424.17	2374.06	2.11%

Note:

The base shear results align well between two software within reasonable tolerances. Total base shear differs by **2.11%** between the two software. This is based on the difference between seismic weights and vibration periods, as well as differences in FE modeling approaches.

Manual Verification of Base Shear

ProtaStructure base shear value is verified against manual hand calculations in this section.

Fundamental Period of the Structure in X Direction	T(X) = 1.670 sec.
Fundamental Period of the Structure in Y Direction	T(Y) = 2.235 sec.

 $\begin{array}{ll} {\bf T}_{a} & = {\rm C}_{t} \ {\rm H}_{n} = 0.0488 \times 46^{\ 0.75} = {\bf 0.862 \ sec.} & [{\rm ASCE \ 7.16 \ Table \ 12.8-2}] \\ {\bf T}_{max} & = {\rm C}_{u} \ {\rm T}_{a} = 1.4 \times 0.862 = {\bf 1.207 \ sec.} & [{\rm ASCE \ 7.16 \ Table \ 12.8-1}] \\ {\rm T}({\rm X}) = 1.670 \ {\rm sec.} & > {\rm T}_{max} = 1.207 \ {\rm sec.} \ {\rm then \ T} \ ({\rm X}) = {\bf 1.207 \ sec.} \\ {\rm T}({\rm Y}) = 2.235 \ {\rm sec.} & > {\rm T}_{max} = 1.207 \ {\rm sec.} \ {\rm then \ T} \ ({\rm Y}) = {\bf 1.207 \ sec.} \\ {\rm In \ both \ X \ and \ Y \ directions, \ the \ upper \ bound \ value \ for \ the \ periods \ governs.} \end{array}$

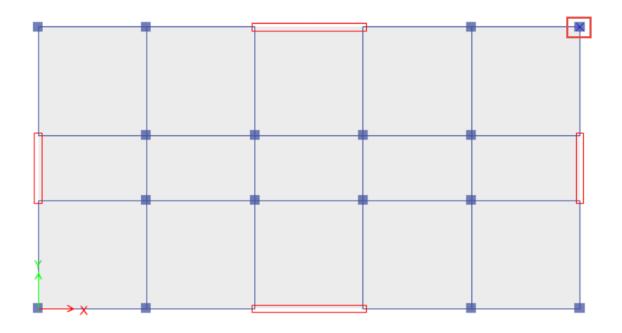
C_s = 1.000 / (7/1.00) = 1.0 / 7.0 = **0.1429** [ASCE 7.16 Equation 12.8-2] C_s maximum (X Direction) = 0.4 / [(1.207) × (7.0/1.00)] = **0.0473** C_s maximum (Y Direction) = 0.4 / [1.207 × (7.0/1.00)] = **0.0473** C_s minimum (X and Y Direction) = 0.044 x 1.000 x 1.00 = **0.044** ≥ **0.01** √ ∴ Cs (X) = **0.0473**, Cs(Y) = **0.0473**

 $W = G + nQ = 47230.32 + 0.25 \times 9750 = 49667.82 \text{ kN}$

 $V_x = Cs(X) W = 0.0473 x 49667.82 = 2349.29 kN$ $V_y = Cs(Y) W = 0.0473 x 49667.82 = 2349.29 kN$ $V_{min} = Cs_{min} * S_{DS} * I_e = 0.044 x 49667.82 x 1.0 = 2185.38 kN$

ProtaStructure results are summarized below.

Dir.	Pe	eriod (s)	Limit	Period (s)	Accele	Spectral ration (g)	Total B	ase Shear (kN)		mum Base Shear (kN)
	Hand Calc.	PS	Hand Calc.	PS	Hand Calc.	PS	Hand Calc.	PS	Hand Calc.	PS
1	-	1.670	1.207	1.212	0.0473	0.0480	2349.29	2374.06	2185.38	2191.59
2	-	2.235	1.207	1.212	0.0473	0.0480	2349.29	2374.06	2185.38	2191.59


Note:

ProtaStructure base shear results seem in line with hand calculations.

Comparison of Joint Displacements and Rotations

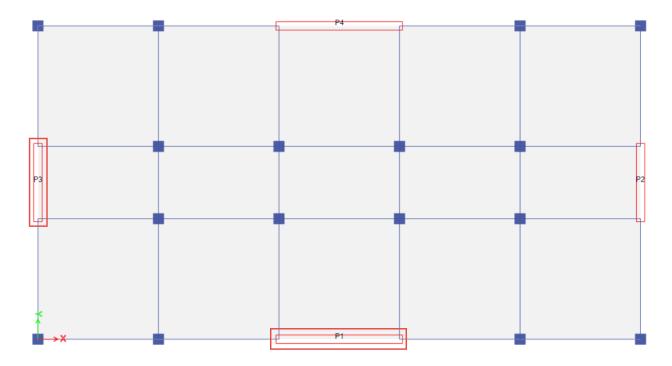
The top-rightmost joint of the 15th floor was considered for comparison.

Displacement and rotation values for EYP load case for this point in both programs are given below.

EYP Load Case	Ux (mm)	Uy (mm)	Uz (mm)	Rx (rad)	Ry (rad)	Rz (rad)
ETABS	-4.913	121.470	-3.643	-0.001284	-0.000009	0.000756
ProtaStructure	-5.755	127.361	-3.688	-0.001270	-0.000020	0.000890

Displacement and rotation values for **EXP** load case in both programs are given below.

EXP Load Case	Ux (mm)	Uy (mm)	Uz (mm)	Rx (rad)	Ry (rad)	Rz (rad)
ETABS	69.139	-4.913	-1.323	0.000003	0.001084	-0.000393
ProtaStructure	72.653	-5.753	-1.370	0.000010	0.001120	-0.000460


Note:

The difference in results between two software seems to be within reasonable limits. The difference is due to the difference between seismic weights and vibration periods, as well as differences in FE modeling approaches and mesh size used in the models.

Comparison of Shearwall Internal Forces

The shearwalls P1 and P3 at Storey 1 were considered for the comparison:

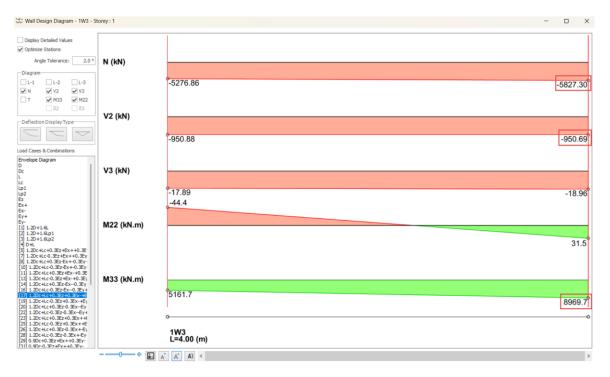
Load Cases and Combinations to Compare

To capture the results in major and minor axes of the shearwalls, results of two separate combinations and their relevant load cases were compared.

- 1.2G + Q + Ex + 0.3Ey + 0.3Ez (Combination 5, Dominant seismic load in X direction)
- 1.2G + Q + Ey + 0.3Ex + 0.3Ez (Combination 17, Dominant seismic load in Y direction)

Combination information is shown in the following screenshot from ETABS

eneral Data			General Data			
Load Combination Name	<u>h7</u>		Load Combination Name	5		
Combination Type	Linear Add	~	Combination Type	Linear	Add	
Notes	es Modify/Show Note:		Notes		Modify/Show Not	es
Auto Combination	No		Auto Combination	No		
fine Combination of Load Case/Con Load Name	nbo Results Scale Factor		Define Combination of Load Case,	/Combo Resu		
Load Name		Add	Load Name		Scale Factor	
Load Name GC	Scale Factor		Load Name GC	/Combo Resu	Scale Factor 1.2	Ad
Load Name GC QC	Scale Factor 1.2	Add Delete	Load Name GC QC		Scale Factor 1.2 1	Ad
	Scale Factor 1.2 1		Load Name GC QC EZ		Scale Factor 1.2 1 0.3	
Load Name GC QC EZ	Scale Factor 1.2 1 0.3		Load Name GC QC		Scale Factor 1.2 1	


Shearwall P1	Axial Fo	rce (kN)	Shea	r (kN)	Momen	it (kNm)
	ETABS	PS	ETABS	PS	ETABS	PS
G	-5883.29	-5653.77	0.00	0.03	0.00	-2.10
Q	-980.59	-966.25	0.00	0.01	0.00	-0.80
EXP	0.00	-0.15	1102.84	-1068.72	17798.32	16553.80
EYN	1390.18	1392.16	84.08	95.55	1435.04	-1533.10
EZ	922.82	-895.92	0.00	0.65	0.00	21.70
Comb. 5 1.2G+Q+EX+0.3EY+0.3EZ	-7346.64	-7601.58	1128.06	-1039.82	18228.84	16097.10

Results for shearwall P1 are given below

Results for shearwall P3 are given below

Shearwall P3	Axial Fo	rce (kN)	Shear	r (kN)	Moment	t (kNm)
	ETABS	PS	ETABS	PS	ETABS	PS
G	-4482.48	-4258.77	0.00	0.01	0.00	-0.20
Q	-745.51	-727.20	0.00	0.00	0.00	-0.10
EXN	728.89	724.59	31.00	32.58	380.44	-371.70
EYP	0.00	0.02	1003.25	-960.57	10343.00	9079.20
EZ	656.71	-689.89	0.02	0.32	0.06	7.80
Comb. 17 1.2G+Q+EY+0.3EX+0.3EZ	-5708.80	-5827.30	1012.55	-950.69	10457.14	8969.70

ProtaStructure diagrams for Combination 17 are given below for reference:

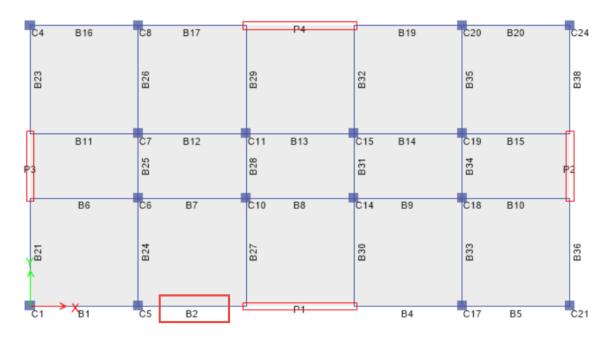
ETABS diagrams for Combination 17 are given below for reference:

Load Case/Load Combin	nation				End Offse	t Location	
O Load Case	O Load C	ombination (Modal Case		I-End	0.0000	m
17	~	Max and Min	~		J-End	4.0000	m
					Length	4.0000	m
Component		Display L	ocation				
Major (V2 and M3)			10.1	and the second			
major (vz ana moy	~	O Show	/ Max () Scroll for Val	ues		
Shear V2	~	O Show	/ Max () Scroll for Val	ues		
		O Show	/ Max () Scroll for Val	ues	Max = 1012 at 4.0000 m	
		O Show	/ Max () Scroll for Val			
	~	O Show	/ Max () Scroll for Val		at 4.0000 m	5516 kN
	~	• Show	/ Max () Scroll for Val		at 4.0000 m Min = 1012.	5516 kN
Shear V2		• Show	/ Max () Scroll for Val		at 4.0000 m Min = 1012.	5516 kN
Shear V2		• Show	/ Max () Scroll for Val		at 4.0000 m Min = 1012. at 4.0000 m	5516 kN 7.1416 kl

Load Case/Load Com	bination			End Offse	et Location	
O Load Case	Load Combin	ation O Mod	lal Case	I-End	0.0000	
17	✓ Max	and Min 🛛 🗸		J-End	4.0000	
				Length	4.0000	
Component		Display Location				
Axial (P and T)	~	Show Max	O Scroll fo	r Values		
Axial Force P						
					Max = -5708. at 0.0000 m	.8001

ProtaStructure diagrams for Combination 5 are given below for reference:

ETABS diagrams for Combination 5 are given below for reference:


Load Case/Load Comb	ination		End Offse	et Location	
O Load Case	O Load C	ombination O Modal Case	I-End	0.0000	m
5	~	Max and Min 🗸	J-End	4.0000	m
			Length	4.0000	m
Component		Display Location			
Major (V2 and M3)	~	Show Max	croll for Values		
Shear V2				Max = 1128.0 at 4.0000 m Min = 1128.00 at 4.0000 m	
Shear V2				at 4.0000 m Min = 1128.06	
				at 4.0000 m Min = 1128.06 at 4.0000 m Max = 18228	536 kN
				at 4.0000 m Min = 1128.06 at 4.0000 m	536 kN .8360

Load Case/Load Com	bination	End Offse	t Location	
O Load Case	Load Combination O Modal Case	e I-End	0.0000	
5	✓ Max and Min ✓	J-End	4.0000	
		Length	4.0000	
Component Axial (P and T)	Display Location	Scroll for Values		
Axial Force P				
			Max = -7346	

Comparison of Beam Internal Forces

The beam **B2** at **Storey 1** was considered for the second comparison:

Combination-5 results for the beam B2 at Storey 1 are as follows.

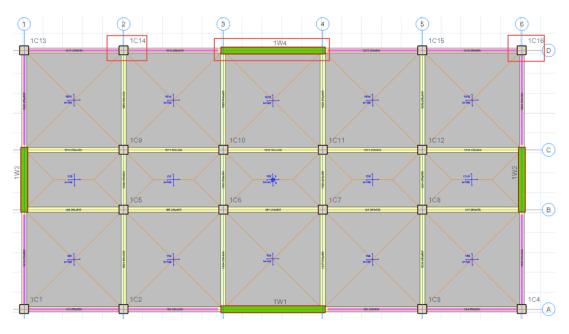
Beam B2 – Storey 1	Shear Force –	·Left (kN)	Shear Force	e – Right (kN)
	ETABS	PS	ETABS	PS
G	-40.16	-39.25	44.20	46.16
Q	-5.70	-5.76	6.66	7.15
EXP	14.81	15.02	13.04	15.55
EYN	0.89	-1.82	-0.32	-3.66
EZ	2.99	4.83	0.08	-5.37
Comb. 5 1.2G+Q+EX+0.3EY+0.3EZ	-37.90	-37.05	73.58	75.44

Beam B2 – Storey 1	Moment-Left (kN)		Moment - Span (kN)		Moment-Right (kNm)	
	ETABS	PS	ETABS	PS	ETABS	PS
G	-33.33	-34.09	18.11	18.57	-43.72	-48.9
Q	-5.34	-5.55	3.43	3.58	-7.64	-8.60
EXP	33.60	34.67	7.42	7.99	-35.94	-39.10
EYN	1.30	-4.96	-0.13	-1.57	-0.45	7.50
EZ	3.77	-5.57	1.84	-2.78	3.94	6.40
Comb. 5	-12.47	-15.00	34.64	32.70	-97.25	-102.20
1.2G+Q+EX+0.3EY+0.3EZ	12.77	10.00	54.04	32.70	57.25	102.20

Note:

The results align well between the two software and differences are within reasonable limits.

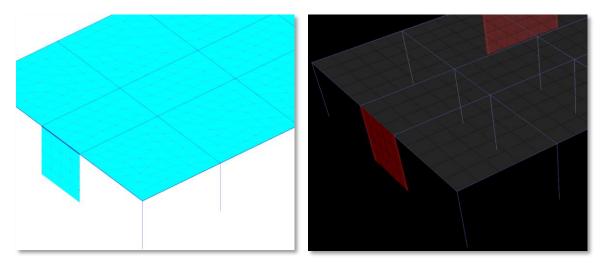
ProtaStructure utilizes "relatively rigid" top chords on the shearwall members to avoid unrealistic diminishing of beam support moments due to fine mesh sensitivity because of the edge-length sensitivity of drilling degrees of freedom in membrane element formulations. In addition to other differences in mass, weight, base shear and FE modeling approaches, this may be another reason for the slightly larger beam support moment.


Another contributing factor is the mesh size used in slabs, which affects the load and mass distribution on the beams. Especially, the mass distribution plays an important role in vertical earthquake effects on beams. The beams should be divided into reasonable amounts of sub frames to accurately capture vertical earthquake effects.

Detailed information can be found in our publication: Comparison of Practical Approaches for Modeling Shearwalls in Structural Analyses of Buildings

Comparison of Vertical Earthquake Analysis Results

Axial Force values for **EZ** load case (Vertical EQ) for some selected columns and shearwall from Storey 1 in both software are given below.



EZ Load Case	1C14	1W4	1C16
ETABS	370.49	922.82	237.48
ProtaStructure	373.47	873.91	247.55

Note:

The results align well between the two software and differences are within reasonable limits. The differences are likely to be due to differences in mass calculation and mass distribution. Mesh size in slabs is also an affecting factor.

Default slab mesh is shown below for ProtaStructure and ETABS. Mesh frequency can be adjusted in both software. ProtaStructure also has an option to use **QUAD** elements in floor meshing.

Default floor mesh in ProtaStructure (on the left) and ETABS (on the right)

Conclusion and Discussion of Results

A comparison was made between two well-known and widely used structural engineering software, namely, ProtaStructure and ETABS. Export functionality from ProtaStructure to ETABS was not used and the model was created from scratch in both software. Horizontal and vertical acceleration spectra, storey mass and seismic weights, modal characteristics, base shear values and analysis results were compared.

The difference between the two software seems to be within reasonable limits. Although the difference in mass and structural weight calculation seems to be propagating to the other results, the difference is within expected tolerances.

ProtaStructure calculates the structural mass and weight in a more accurate manner, trying to avoid double counting and repetition. ProtaStructure also tends to use finer mesh by default in slab modeling to achieve greater load and mass decomposition resolution.

The model was kept simple for the sake of comparison. The following points may yield differences in the comparison of results, and they should be kept in mind in future studies:

- ProtaStructure can consider cracked/uncracked section in seismic/non-seismic combinations
- Two-stage analysis for buildings with basement floors can be carried out in ProtaStructure
- Differences may exist in the consideration of diaphragm eccentricity in EQS and RSA analyses between ProtaStructure and ETABS
- ProtaStructure automatic applies irregularity penalties, such as behavior factor adjustment, additional eccentricity amplification, etc.
- ProtaStructure automatically amplifies response spectrum analysis results to equivalent static
- Differences may exist in FE modeling approaches and member eccentricities between ProtaStructure and ETABS.
- ProtaStructure inserts members with accurate eccentricities, forming a detailed structural BIM model, while analytically transforming the columns to the centroidal locations. On the other hand, ETABS focuses on centerline modeling, usually simplifying or ignoring member eccentricities or locations.
- Difference in finite element member formulations may exist. There may be proprietary/different formulations for simulating membrane and plate bending, as well as beams.
- ProtaStructure automatic applies overstrength factors (where necessary) and live load reductions.

Important Note:

ProtaStructure is a highly advanced design software that performs detailed post-processing on analysis results according to code requirements. Especially for the seismic design, the raw analysis results are almost never directly used without modification. Hence, comparison studies to be done in the future should consider these factors and start from scratch by comparing simple results, gradually delving into complex output. The comparison is made to the best of the author's knowledge on ETABS. ETABS documentation should be referred to for detailed information or in case of any questions.

Thank You...

Thank you for choosing ProtaStructure Suite product family. Our top priority is to make your experience excellent with our software technology solutions.

Should you have any technical support requests or questions, please do not hesitate to contact us at all times through globalsupport@protasoftware.com and asiasupport@protasoftware.com and asiasupport@protasoftware.com

Our dedicated online support center and our responsive technical support team are available to help you get the most out of Prota's technology solutions.

The Prota Team

